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A general scaling theory of transient phenomena is formulated near the 
instability point for the moments of the relevant intensive macrovariable, 
for the generating function, and for the probability distribution function. 
This scaling theory is based on a generalized scale transformation of time. 
The whole range of time is divided into three regions, namely the initial, 
scaling, and final regions. The connection procedure between the initial 
region and the scaling region is studied in detail. This scaling treatment has 
overcome the difficulty of divergence of the variance for a large time which 
was encountered in the ~-expansion, and this scaling theory yields correct 
values of moments to order unity for an infinite time. Some instructive 
examples are discussed for the purpose of clarifying the concepts of the 
scaling theory. 
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function ; f luctuation enhancement theorem ; system-size expansion, most 
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1. I N T R O D U C T I O N  

I t  has been a fasc inat ing  bu t  difficult p rob l em to s tudy analy t ica l ly  re laxa t ion  
f rom the ins tabi l i ty  point .  In  a previous  pape r  (1~ (to be referred to  as I), a 
scal ing theory  for  t rans ient  p h e n o m e n a  near  the ins tabi l i ty  po in t  has been 
p roposed .  The  m a i n  idea  of  this  scal ing theory  is to divide the whole  range of  
t ime  in to  three  reg ions :  the  initial region, in which the l inear  a p p r o x i m a t i o n  
(or  more  general ly,  a pe r tu rba t i ona l  expans ion)  is valid,  the scaling region, in 
which  the scal ing law holds ,  and  the f inal region, in which the system ap-  
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Fig. 1. Fluctuation a for ~ ~< ~; (a) initial region, 
t (b) scaling region, (c) final region. 

proaches the equilibrium state, as shown in Fig. i. One of logically simple 
derivations of the scaling law in the scaling region is to sum up all the most 
dominant terms in a certain sense. For example, they may take the form 
a~{EoJ(t)} ~ for small E, where e denotes the inverse system size, i.e., e = ~2-~, 
with f~ the system size. In particular, for a typical nonlinear Fokker-Planck 
equation (~) with the moments c~(x) = 7x(1 - x 2) and c2(x) = c, the most 
dominant terms of the fluctuation (or moment) y2(t, E) of the relevant 
physical variable x can be calculated as (1) 

y2(t, ~) - (x  ~) "~ (Eae TM) - 3(Ecre2Y~) 2 + 15(Ecre2r~) ~ . . . .  

= ~ ( - 1 ) " - ~ ( 2 n -  1)!! z~ 
r ~ = l  

= - d x  ( 1 )  

with ~" = Eae TM, ~ = % + ~ ,  and ~ = c/2~,, for the initial distribution 

1 - 
P(x, 0) = (2~rE%)lf~ exp (2) 

The last form of Eq. (1) is nothing but the scaling form y~o(r) of y2(t, e). The 
scaling region is specified by the time region in which the scaling time variable 
r is of order unity. (~'2~ For the above example, the scaling region is giver/by 

t ~ (1/2y) log(1/ee) (3) 

It is possible in principle and logically simple to calculate perturbationally the 
above asymptotic expansion (1), but it is a very much complicated matter to 
find terms of higher order explicitly. In fact, the expression (1) has been 
derived in I from the scaling theory. It will be instructive to discuss here how 
the linear approximation C2) breaks down. It gives an expression 

y~"')(t, e) = E~e 2 r e -  Ecrl + O(c 2) (4) 

This is shown in Fig. 2, together with the scaling solution y~(~). It blows up 
as t goes to infinity, while the scaling solution approaches the correct equi- 
librium (or stationary) value yz(o% e) = 1 + O(e). This correct approach to 
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Fig. 2. Schematic time dependence of y2(t, ~); (a) 
linear approximation y~t~>(t), (b) scaling solution 
y~r176 
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equilibrium is one of great merits of the scaling theory. These situations will 
be discussed in general in the present paper more systematically and more 
explicitly than in I. 

One of the main ideas of the scaling theory for transient phenomena is 
to extract an evolution equation of the scaling function in the scaling region 
and to connect the solution of it with the dominant part (or scaling part) of 
the solution in the initial region, at the boundary between the two regions, as 
shown in Fig. 1. This idea has been performed in I by introducing the follow- 
ing generalized scale transformation of time: 

r = S(t ,  ,, 3,...) (5) 

where 8 denotes a deviation of the initial system from the instability point 
(or asymptotically unstable point for a small ~). The evolution equation of 
the scaling function is evaluated ~1,2) asymptotically by keeping .rfixed in the 
limit of a small ~. This method yields the scaling form ~1) 

f ( t ,  ,, 8,..) ~ f~o(z, 3,-",...) (6) 

in the scaling region for physical quantities such as moments, the generating 
function, and the distribution function, where/~ is an appropriate positive 
exponent. One of the important consequences of the scaling-law (6) is that a 
large enhancement of fluctuation occurs ~1~ around 

tm~ S-1(1, ,, 3,...) (7) 

where S-1 denotes the inverse function of ~" = S(t,...). The enhancement 
factor R for the intrinsic fluctuation (x2)c is given by R ~ ~- 1 in the unstable 
region, when the initial variance is Eao (fluctuation enhancement theorem). 

The above scaling idea for transient phenomena has also been used to 
establish generally the anomalous fluctuation theory ~,3) in the extensive 
region (as shown in Fig. 3), in which the extensive property holds3 3-5) 

In Section 2, the physical meaning of the smallness parameter, the 
existence of a scaling region, and the general scheme of the scaling theory are 
discussed. The scaling theory (or scaling limit) in the Kramers-Moyal 
equation is presented generally in Section 3. Furthermore, the scaling solu- 
tions of the moments, generating function, and distribution function are given 
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Fig. 3. The ~-~ plane; (a) unstable regime 8 < ~, 

(b) extensive regime ~" ,~ 3. 

explicitly. Some interesting examples are discussed in detail in Section 4. In 
particular, the relaxation (~ from the unstable state is studied in detail in a 
typical nonlinear Fokker-Planck equation (i.e., the laser model). 

2. PHYSICAL M E A N I N G  OF THE SMALLNESS PARAMETER 
�9 , THE EXISTENCE OF A SCALING REGION, A N D  THE 
GENERAL SCHEME OF THE SCALING THEORY 

First we discuss the physical meaning of the smallness parameter ~. In 
the present paper, it denotes the inverse system size ~ = f~- 1, where f~ is the 
volume or the number of particles. As is well known, the fluctuation of a 
macrovariable X is of order f~lz2 in a normal situation, while the average 
value of X is of order s Thus, the relative ratio of the fluctuation to the 
average motion is E 1/2. That is, the smallness parameter ~ denotes the measure 
of the effect of fluctuations and consequently it plays the role of the expansion 
parameter with respect to fluctuation effects. 

Next we argue the existence of a scaling region for the case of the 
relaxation from the unstable point. The average value of the relevant macro- 
variable does not change in time for a vanishing E if the system is located just 
at the unstable point at the initial time, because of the lack of fluctuation (or 
diffusion), as is easily seen from the analogy to classical motion in a potential 
shown in Fig. 4. The smallness parameter ~ is also analogous to the Planck 
constant h. The wave function of a quantum mechanical system in a potential 
shown in Fig. 4 moves toward the stable points even if the initial wave func- 
tion is of a f-function type at the unstable point, as far as h is nonvanishing. 

Fig. 4. Classical motion in a potential; (a) 
unstable point, (b) stable points. 



Scaling Theory of Transient Phenomena Near the instability Point 15 

Fig. 5. Physical quantities depend upon the path 
(or r =-e/z) near the essential singular point 

= 0 ( o r S = 0 )  a n d z = 0 .  

fi  

T 
0 

0 g = e~-e C-2re) 

It is generally concluded from these considerations that physical quantities 
have an essential singular point at e = 0 (or 8 = 0) and z ( ~ e  -2rt) = 0 (for a 
certain constant 7)- Therefore, the limiting values of the relevant physical 
quantities depend upon the path or limiting process, namely upon the ratio 
T = E/z, as shown in Fig. 5. Thus, the physical quantities depend upon the 
so-called scaling variable ~- in the vicinity of the essential singular point E = 0 
(or 8 -- 0) and z -- 0 (t -+ oo). This confirms the existence of a scaling region 
for a small E (or 8) and a large time t. This is quite analogous to the existence 
of a scaling region in critical phenomena. 

Here a general scaling expansion is formulated using the generalized 
scale transformation of time (5). We start from the following abstract 
equation (1>: 

~ f ( t ,  E, 3,...) = .,~a(t, E, 3,...)f(t, E, 8,..) (8) 

where f denotes the distribution function P(x,  t), generating function 
W(A, t), or fluctuations (i.e., moments), and La is a linear (or nonlinear) 
operator, m As in I, first we apply the scale transformation (5) to (8), and 
consequently we obtain ~> 

where 

s ( , ,  , ,  s , ._ )  = E, , ,  8 , . . . ) f  (9) 

s(% ~, 8,..) = [ 0 ] 
-~ S(t ,  E, 8,...)jt=s_lc,,,.~....> (10) 

Keeping ~ fixed and 3E-" fixed, we take the limit E ~ 0, and consequently we 
obtain the evolution equation of the scaling functionf~(~-,...) of the form 

a 
~f~o = s ~ = lira {s(% E, 3,..)}-1La(S-1(~, E, 3,...), ~, 8,..) 

E--~O 
~,~E - u f l x e d  

(11) 
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Thus, f takes the scaling form 

f ( t ,  ,, ~,...) ~_ Lo(% 8,-%...) (12) 

in the scaling region. Explicit evaluations of scaling functions together with 
detailed arguments on the connection procedure of the scaling solution with 
the solution in the initial region are given in Section 3 for the Kramers-Moyal 
equation described by 

where 

~ P(x, t) + ~ x , ,  ~ , ,  p(x, t) = o 

and 

~f ' (x ,p, , )  = f d r ( 1 -  e-rP)w(x,r,,) = ~ (-1)'~-1 .= 1 n! p"c,~(x, .) 

/. 
c.(x, .) = j r"w(x, r, .) dr 

with the transition probability w(x, r, ,). 

(13) 

(14a) 

(14b) 

3. SCALING T H E O R Y  IN THE K R A M E R S - M O Y A L  EQUATION 

In this section we discuss explicitly and systematically how to connect 
scaling solutions in the scaling region with those in the initial region for the 
Kramers-Moyal equation. In order to find heuristically a correct connection 
procedure between the initial and scaling regions, we start from the equations 
of motion for moments {(x~)} instead of the distribution function P(x, t), 
because it is easy to evaluate asymptotically the order of magnitude of mo- 
ments for a small E. After a correct connection procedure has been found for 
moments, it is easily transferred to the connection procedures of the generat- 
ing function and distribution function, so that the scaling functions thus 
connected may give the same expressions of moments as those obtained from 
the equations of motion for moments. The logical steps of these connection 
procedures for moments, the generating function, and the distribution func- 
tion are illustrated in Fig. 6. Once these connection procedures have been 
established, the distribution function is the most convenient among them for 
practical applications of the scaling theory, because the evolution equation of 
the scaling distribution function for the Kramers-Moyal equation is expressed 
by the drift equation (i.e., a linear partial differential equation of first order), 
and consequently it can be solved generally, as will be discussed later. 
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Fig. 6. Diagram illustrating the scheme of the scaling theory. 

3.1. Scal ing Theory  Based on M o m e n t s  

As was proven in the previous paper, (1~ the average value <Q(x)) of an 
arbitrary function Q(x) defined by 

<Q(x)) = f Q(x)P(x, t) dx (15) 

satisfies the equation 

~ d  <Q(x)) + J/f* x, eFx, e Q(x) = 0 (16) 

for the Kramers-Moyal  equation (13), where ~ *  is the adjoint operator of 
defined by 

~*(x,  p, ~) =- - ~ c.(x, E)p" (17) 
n = l  

and we have performed partial integrations iteratively, assuming that 
x"P(x, t) vanishes at the boundaries of x for any positive integer n. For 
simplicity, we discuss here a symmetric situation in which e2.(-x,  ~)= 
c2~(x, E) and c2.- 1 ( -  x, ~) = - c2.- l(x, ~). Our main results on connection 
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procedures hold irrespective of  this restriction. F rom (16), it is shown that  
the moment  yam(t) defined by 

yam(t) = ( x  2m) (18) 

satisfies the following infinitely coupled equations:  

d y2m(t) = 2nTy2m + fzm({Y2j}) + Cg2m({Y2j}, E) (19) 

where 

f2m({Y2j)) - 2n(c(x)x 2m-~) (20a) 

x~ ~ -  2 / d ~ x 3 g~m({y2j}, ,) -= 2n<c(x ,  ,)~m-~> + z:, -W.T ~, c~(x, 0 ~ x 2m / /~=2 \ 

(2Oh) 
with 

c (x )  - c l ( x )  - y x ,  c~(x)  = e l ( x ,  0), r = e;(O) > 0 (21) 

~e(x ,  ~) - e~(x,  , )  - e~(x)  

Here,  wi thout  loss of  generality, we have assumed that  x -- 0 is an asymp- 
totically unstable point  for  a small E, i.e., e~(0) -- 0. In the following we 
assume for simplicity that  all {c~(x)} are analytic at x = 0, i.e., they are 
expandable in Taylor  series of  x. The initial distribution function is also 
assumed to be given by (2) for brevity. (It is easy to extend our  arguments to a 
more  general initial condition.) Consequently,  the initial values of  Y2m are 
given by 

y2m(O) = bm(E%)~; bm = (2n - 1)!! (22) 

It  is easily shown that  y2m(t) takes the asymptotic  form 

y2m(t) = bm{'a(t)} m + O('m+~); or(t) = ere TM - cr~ (23) 

in the initial region, where 

= go + ax and al = c2(0, 0)(27) -~ (24) 

This is derived from the following integral equation,  which is equivalent to 
(19): 

y2m(t) = e 2~yt e-  2m'f2m({y2j(s)}) ds 

+ e e72m'~g2m({y2j(S)}, ~) ds + y2m(O) (25) 
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or more directly from the following distribution function in the initial region: 

1 -2~--g~(t) Pini(x, t) = [2~E~(t)]112 exp (26) 

which is the solution of the linearized Fokker-Planck equation 

8t = -~-x (yx) + ~ ~e2(0, 0) ~ Pin, (27) 

In Appendix A, we give the derivation of (23) from (25). This derivation con- 
firms the validity of  the simplification of  the Kramers-Moyal equation to the 
linearized Fokker-Planck equation (27) in the initial region. It should be noted 
that the dominant part ofy2.(t) in (23) for a large t near the boundary between 
the initial and scaling regions takes the following scaling form: 

y2.(t) = b.(~e2~)" + . . . .  b.r" + ... (28) 
where 

~- = ,~e TM = ,(Cro + al)e TM (29) 

This expression for ~- gives a typical example of the generalized scale trans- 
formation of time (5). As is seen from the above argument, an appropriate 
choice of the scale transformation S in (5) can be made mostly by studying 
the asymptotic behavior of the dominant part of the solution in the initial 
region. 

In the scaling region, the {Yz.} are shown from (11) to satisfy the follow- 
ing coupled evolution equations: 

d 
r-dr Yz. = nyz. + (2y)-~fz.({yz,}) (30) 

Since fz.({Y2J}) does not contain Y2., the differential equation (30) has a 
PoincarO nodalpoint at y=. = 0 and r = 0. The solution of (30) has an indefi- 
nite term of the form c.r" with an arbitrary constant c., for the initial 
condition that Y2. = 0 for all n at r = 0 [which is automatically contained in 
(30) because f2.({0}) = 0]. Therefore, it is fortunately possible to connect 
smoothly the solution of (30) with the scaling dominant part (26) in the initial 
region. Thus, we can determine uniquely the scaling functions of the moments 
{y(~(r)}. In fact, Eq. (30) is transformed into the following integral equation: 

f2 y2,(.r) = -r" (2~,~"+~)-~f2~({y2j}) d~ + C,T" (31) 

From the condition that y2,(r) = b,r" + ... for a small % we obtain that 
c, = b,. Therefore, the {Y2,} satisfy 

Y2, = ~" (2y~"+z)-aA,({y2j}) d~ + b,T" (32) 

with (22). 
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In order to justify more rigorouslY the above connection procedure, we 
make use of the formulation in an integral form <1) instead of the above 
differential form. That is, we start from the integral equations (25), and extract 
asymptotically dominant scaling evolution equations for {Y2,(~)} in integral 
forms. Then, the matching between the initial and scaling regions is imple- 
mented automatically in the course of the asymptotic evaluation. Now, we 
make the scale transformation (29) in (25), and consequently we obtain 

y2.(r ) = r ~ fz,,({y2j(~:)})(2).~:,~+ ~)-1 d~: 

f; ] + e g2~({Y~j(0}, e)(2~'~+1)-1 d~ + ~-~y2~(0) (33) 

with ~ = e~ and (22). Here, keeping rf ixed,  we take the limit e --~ 0. Thus, we 
find that 

lim [e f~  g2~({Y2s(~)}, E)(2~'~+1) -1 d~ + ~-~y2~(0)] = b~ (34) 
dlx~ J~ 

Note that the integral on the left-hand side of (34) diverges proportionally to 
e-1 for a small e and consequently that the first term in (34) makes a finite 
contribution. In this sense, the diffusion effect coming from the c2 term of 
(14a) is partially included in our scaling theory. This is reflected in the 
definition of the scaling variable r as is seen in (29). Equivalently, this effect is 
produced through the connection procedure. For the derivation of (34), see 
Appendix B. Thus, we arrive at the integral equation (32), taking the limit 
E -+ 0 in (33) for  ~ fixed. This gives a perfect justification of the connection 
procedure adopted above for the formulation in a differential form. 

It is possible (~ to solve the coupled integral equations (32) in asymptotic 
series in ~-. It is, however, more convenient to find the solutions in closed form 
by the help of the generating function, as will be discussed in the following 
subsection. 

3.2. Generating Function Formalism 

Since we are now discussing a symmetric situation, it is convenient to 
introduce here the following generating function: 

~(~, t) = (exp()tx2)> (35) 

instead of the ordinary generating function (1,4~ defined by W()t, t) = <exp(~x)>. 
It is easily shown in two ways that the scaling generating function ~so(h, ~-) 
satisfies an evolution equation of the form 
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where 

61(x) = 2x/~ cl(a/-~) (37) 

A simple way of deriving (36) is to rewrite the coupled evolution equations 
(30) in the generating function formalism to get the result (36) with the use of 
(35). Another means of derivation is to apply the general scaling procedure 
(11) to the evolution equation of ~(A, t), which is shown in Appendix C to 
take the form 

E~ ~F(h, t) + ~*(~-~A, ,~, ,)~(h, t) = O (38) 

where ~ *  is the adjoint operator of ~ defined by (C.3) and is given by 

- ~ = 1  ~ p . t  , e) (39) 

and 

~(~, ~) = 2"~"/2c~(V~) (40) 

The general formula (11) yields (36) for the present case (38). 
Now, the scaling part of the generating function in the initial region is 

found, from (26) or (28), to be 

~I~i ~ b~. ~ = 1 x 2 
~--'7'o n: ~ o0 exp -2-;r + hx2 dx = (1 - 2hT) -1/2 

(41) 

We solve the scaling evolution equation (36) so that its solution may be 
connected smoothly with (41). The result thus obtained is given by 

1 ~o 

where f - l ( y )  is the inverse function of f (x)  defined by 

f(x) = exp d~ e = x + .-- (43) 

For details, see Appendix D. 
Thus, the moments {y2~(r)} are expressed by the integrals 

= 1 ~o X2 
~ f _ ~ ( e x p - - ~ ) { f - l ( ~ x ) } ' " d x  (44) 
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Note that 

y 2 . ( ~ )  ~ x~ ~ for  �9 ~ 

where x~ is the stationary point of x defined by 

cl(x~) = 0 or x, = f -  1(oo) 

and that 

Y2. = b.r" + "'" for small 

(45) 

(46) 

(47) 

3.3. Scaling Theory Based on the Distr ibution Function 

In this subsection we find the scaling distribution function, so that it 
may be connected with the following scaling part of the distribution function 
in the initial region: 

~c) exp (48) Pinl(X, "r) = 1 - ~  

which is obtained from (26) with the use of a(t) defined by (23). This gives the 
asymptotic expression (28) for the moment Y2., and also satisfies the relation 

~(sc)t~ ~.) 2 (so) = [exp(Xx )]Pim (x, .r) dx (1 2h~-)-1/2 (49) i n t  k I ~ ,  = - -  

co 

as it should. 
Following the general theory presented in Section 2, the scaling dis- 

tribution function is governed by the following drift equation: 

_~ pso +_~ O el(x)Pso = 0 (50) 

or equivalently 

27~" es* + -~x cl(x)eso = 0 (51) 

The general solution of (50) or (51) is given by 

e~o = } logf(x) - t = ~ f ' ( x ) ~ ( f 2 ( x ) / r )  (52) 

where r [or ~b(y)] is an arbitrary function of y, andf(x)  is defined by (43). 
There are two equivalent methods of determining the arbitrary function 

or ~b so that the solution (52) may be connected smoothly with the dominant 
scaling solution in the initial region: 
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(a) One of the simplest methods is to connect (52) with (48) for small 
near x = 0. Noting that f (x)  = x + ... for small x, we obtain 

1 f '  x exp(-f~(rx) ) (53) Pso(X, = ( ) 

This confirms the expression for 'i'so in (42) as follows: 

"~o(A, ~-) = [exp(ax~)]P~o(x, ,) dx 
o0 

1 ~o -- f_. e}] exp{A[f-I(V'~r"] 2} d ,  (54) 

where we have made a transformation of variables f = r-  1/2f(x). This yields 
the justification of the above connection procedure. 

(b) An equivalent connection procedure is to solve the "d r i f t "  equation 
(51) with the modified initial condition 

P,(x) t,(~o,r~ 1 (x~r~)  = - i , l  t-~, r~) = (27r~.i) 1 2 exp - (55) 

at ~- = r~. More explicitly, we may put r~ = ea = e(a 0 + a~), which corre- 
sponds to h = 0, for ~ = Ea exp(27h). As will be seen later, one of the 
essential points of our scaling theory is that the scaling solution can be 
determined uniquely, irrespective of how we choose ri as long as ~-~ ~ r. With 
the use of the general solution (52), the solution of (50) or (51) with the initial 
condition (55) is easily given in the form 

x e x p [ - ( 2 r , ) - ~ ( f - l ( [ - ~ J ~ ' ~ ( x ) ) }  2] (56) 

Insofar as we are concerned with the scaling form, expression (56) is simplified 
t o  

Pso(X, ~-)= ~ f ' ( x )  exp( -"~-r]f2(x)~ (57) 

by taking the limit rd-- ~ --> 0 for fixed r with the use of the property (43). 
Thus, we obtain the same result as (53). Note that the variance of P,(x) is 
% + el instead of %. This replacement is essential for the case of eo = 0 
(i.e., for the case that the initial distribution function is a 8 function). Other- 
wise, the solution of the drift equation is completely classical or deterministic, 
as was discussed in I. 
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For an arbitrary initial distribution function 

P,(x) = g(x, ~,) (58) 

the solution of (51) is given by 

(59) 

This gives the explicit result (56) for the initial distribution (56), as it should. 
The scaling distribution function can be rewritten as 

Pso(x, ~) = [1/(2~rz) 1'2] exp ~(x, ~-) (60) 

where 

4(x, r) = -(1/2 .c) f2(x)  + logf ' (x)  (61) 

Therefore, the most probable path y( t )  is given by the solution of the equation 

[f(y)]2 = r[1 - 7-1c1'(y)] (62) 

However, it should be noted that this most probable path y( t )  is not so useful 
in evaluating physical quantities asymptotically, because the variance in this 
scaling region is very large (i.e., it is of order unity) compared to that in the 
extensive regime (i.e., initial or final region). It is useful only for discussing 
the overall features of the relaxation of the distribution function. In fact, with 
the use of the most probable path y(t) ,  we can define a characteristic time to 
[or % = e~ exp(27to)], which is called the transition time from a single peak 
[namely y( t )  = 0] to double peaks [namely y( t )  > 0]. It is determined from 

~o = limf2(Y)[1 - 7-1c1'(Y)]-1 (63) 
y"-~ 0 

Therefore, we have 

1 T o 

That is, the transition time is of order log(l/E). The most probable path shows 
the singularity: 

y(r) % -Y-a(T - Zo)1/2; a > 0 (65) 

near (and after) the transition time, as shown in Fig. 7. Here, a is given by 

a 2 = _ 12c(8~(0)[~.0c(~(0) + 87f(s~(0)]- 1. (66) 

Furthermore, if we define '~ Gaussian variance" ~ by 

Pso(x, .r) ~ exp{-[x - y(t)]2/2cra} (67) 
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Fig. 7. Tirne dependenceofthe most probable 
path y(r). 

I 

0 o 

f 

f 
near the most  probable path y ( t ) ,  then it shows the singularity 

~ r~ for ~- < % cra = 1 -Tf(3~(0) = ro - "r 

and also 

(68) 

_ {a2~b] -1 ,,~ 1 for T > T O (69) 
~a = \~X2]x=yC,~ r - -  To 

near the transition time, as shown in Fig. 8. Although this singularity may 
not be observable, it will be of  great interest in that it shows an instabil i ty  

with respect  to t ime  corresponding to the large enhancement of fluctuation 
and that these singularities are completely analogous to those of  the Landau 
theory on phase transitions in equilibrium. 

These situations were already partly discussed in I for a simple model 
and will be discussed more explicitly in Section 4. 

To summarize the main results of this section, as is illustrated in Fig. 6, 
we have started from the equations of  motion for moments to find the correct 
connection procedure between the initial and scaling regions, and have 
transformed it into the formulation of the generating function and the 
distribution function. The connection procedure for the distribution function 
may be the most  convenient for practical purposes. 

Fig. 8. Gaussian variance ea. 0 ---~ Z" 
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4. EXAMPLES 

It will be instructive to discuss here several examples of the general 
arguments given in Sections 2 and 3. The first two are examples of the 
scaling theory, and the third is concerned with the systematic scaling expan- 
sion, which yields an alternative explanation of the scaling theory. 

4.1. Unstable Gaussian Distr ibution--Linear Fokker-Planck 
Equation 

The simplest example of the relaxation near the unstable point is the 
linear Fokker-Planck equation of the form 

o P(x, t) - ~  (~,x) + ~ ,c - -  = P ( x ,  t )  (70) 
Ot 

As is well known, the solution of this equation with an initial distribution 
function of the form 

1 [ ( x -  8)=| 
P(x ,  O) = (2rrEao),/= ,exp "27% ] (71) 

is given by 

where 

1 2,o(t) ] P(x ,  t) = [2~r,r e x p ( -  (x - ae") =] (72) 

~(t) = ee 2 y t -  or1, ~ = % + ~1, or1 = (27)-1c (73) 

It is easily seen for the time region ee TM >> % that P(x ,  t) has the following 
scaling property: 

P(x ,  t) ~ Pso(x, r, 3, -u) = 1 ( [x - 8,-"(r/~r)x'212] (74) _ ~ exp 2r ] 

where r = eee TM and/z  = 1/2. It should be remarked that the whole time 
region except the initial region happens to be the scaling region for this 
special model. Thus, this gives an exactly soluble, simple example of the 
scaling property. 

4.2. Laser Model  

This model is described by the following typical nonlinear Fokker-  
Planck equation(1-~'6~: 

I - ~ P ( x ,  ~ t) = - ' ~x  c~(x) + ~ ~ P(x ,  t) (75) 
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with 

e l (x )  = 7x(1 - x2); 7 > 0 (76) 

Here, without loss of generality we have put xe = + 1. The function f ( x )  
defined by (43) takes the form (2) 

x y 
f ( x )  - (1 - x2) ll2 and f - l ( y )  = (y2 + 1)1/2 (77) 

for the present model. Thus, the general formula (56) yields 

~" 2[~'(1 - x 2) + r~x ~] 

(78a) 
which is reduced to the scaling solution 

P~o(X, r) = 1 - 2 r ( 1  - x 2) 2 exp - - log(1 - x 2) (78b) 

for r~ ~ % as was already reported. (z) The transition time Zo from a single 
peak to double peaks is found from (78b) to be r0 = 1/3, which yields 

to = - (2y)-1 log(3~,) (79) 

The most probable path y ( t )  has the following singularity(i): 

y(r)  = 1 - ~ ]  = [1 - (3eE)-~e-2't] v2 

- V~(~" - ~'o) 1/2 oc (t - to) z/2 (80) 

near and after the transition time, as has been discussed generally in Section 3 
(see Fig. 7). 

The moment Y2, is given by (z) 

1 | 
tx -7 ) ax (81) 

from the general formula (44) with the use of (77). In particular, the second 
moment y2(t, ~) is expanded in an asymptotic series of r, as has been demon- 
strated in (1). 

Physically, the temporal evolution of the fluctuation is determined in the 
initial region by the cooperative effect between the linear drift term and the 
diffusion term. For  the scaling region, it is governed mainly by the drift 
term, as shown in Fig. 9, in which arrows denote the change of velocity of the 
distribution function due to the drift term. In the final region, the drift and 
diffusion terms become equally important, and consequently the equilibrium 
distribution function is determined from their balance, as shown in Fig. 10. 

The present sealing result is consistent qualitatively with Saito's numerical 
results (7) based on the double-Gaussian approximation. (8) Recently, Tomita 
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i ' 

- I / ~ ~ 0  -65 U 05 1.0 --~X 
Fig. 9. Change of the distribution function; (a) T = 0.02, (b) T = 0.2, (c) r = To = 1/3, 
(d) T = 0.5, (e) T = 1, and (f) T = 4, where T = eee~Y*; the arrows show the direction of 
the change of velocity of P(x, t). 

T; TI 

-! 0 { 
, • 

Fig. 10. Equilibrium distribution function due to the balance between the drift force 
(upward arrows) and diffusion force (downward arrows). 

et al. (9) have appl ied  the present  a sympto t i c  eva lua t ion  m e t h o d  and  connec-  
t ion  p rocedure  of  our  scal ing theory  (1) to the same mode l  (75), on  the basis of  
a " q u a n t u m  mechan i ca l "  formula t ion ,  namely  using a Schr6dinger  equa t ion  
equivalent  to (75). They have ob ta ined  the decay process  of  the wave funct ion,  
which cor responds  essential ly to ours,  (1) as i t  should�9 

4.3. Fokker -P lanck  Equation w i t h  a Linear Dr i f t  Term and a 
Nonl inear  Di f fusion Term 

In  con t ras t  with the  above  laser model ,  we consider  here the F o k k e r -  
P lanck  equa t ion  with  a linear drift term and a nonlinear diffusion term: 

a P(x, t) = -~x (YX)  + ~-~-~ c2(x) P(x, t) (82) 
at 
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Here, we assume for simplicity that c2(0) > 0. In order to apply our scaling 
theory to this specific model, we calculate first the auxiliary function f (x)  
defined by (43) to get the resultf(x) = x. Consequently, from (57) the scaling 
function takes the Gaussian form 

Pso(x, ~) = [1/(2~r@/2] exp(-x2/2z); 7 = Eae TM (83) 

for the initial distribution function (2), where a = a0 + al and al = c2(0)(27)- z 
That is, our scaling theory becomes equivalent to the linearization of the FP 
equation for this specific example. By the linearization, we mean the replace- 
ment of the second moment c2(x) by the constant part c2(0). It is clear that 
the solution of the FP equation thus linearized has the scaling property, as in 
Section 4.1. Thus, we do not need explicitly the connection procedure for this 
particular case. 

It should be noted that the approximation or linearization implemented 
by Glauber and Haake (1~ in discussing fluctuations of superradiance corre- 
sponds to a special case of our scaling theory for the specific model (82) in the 
above sense, although the important concept of the conneetion between two 
regions was not introduced in their argument. Thus, our scaling theory gives a 
justification and limitation of the treatment by Glauber and Haake (1~ on 
superradiance. 

A systematic scaling expansion for this model (82) will be obtained by 
treating the "nonl inear"  term 

1 02 
~ ~ x  ~ [e~(x)  - c~(O)]P(x, t) (84 )  

as a perturbation. An example of this perturbational expansion has been given 
by Narducci and Blueme111 for the case of superradiance. 

5. C O N C L U D I N G  R E M A R K S  

The scaling theory of transient phenomena near the instability point has 
been presented. The systematic scaling expansion from the scaling limit will 
be reported in the near future. The second term of the scaling expansion 
(which is of order ~) has a particular importance as the time goes to infinity, 
because the variance or fluctuation in the final region (or near equilibrium) 
is of order E. That is, such a fluctuation may be calculated from the first 
correction to the scaling limit. 

There may be another method to study the fluctuation and relaxation 
near the equilibrium state, namely one may find a connection procedure 
between the scaling region and the final region, just as for the initial and 
scaling regions. One of the simplest connection procedures is to connect, at 
the boundary of the two regions, the most probable path y(t) and Gaussian 
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variance cro(t) around it obtained in the scaling region with those of the final 
region, which are the solutions of the following evolution equation~3.~.~2~: 

~y( t )  = c~(y(t)), or(t) = 2c~'(y(t))e(t) + c2(y(t)) (85) 

This connection procedure will be useful in analyzing experimental data near 
the instability point. 

As illustrated in Fig. 6, the present derivation of the scaling theory, in 
particular the connection procedure, has been implemented on the basis of 
the equations of motion for moments, because it is much easier to evaluate 
their order asymptotically for small e, compared to the distribution function. 
However, once the connection procedure has been found explicitly, it is more 
convenient to make use of the distribution function in studying the scaling 
property. 

The scaling solutions (57) and (78b) can be used even in the initial region 
if we replace ~- by ~( t )  defined by (23). 

Some applications of the scaling expansion, for example, to super- 
radiance, (la~ will be reported elsewhere. 

The present formulation of scaling theory for a single intensive variable x 
will be extended in the future to multicomponent systems, and more generally 
to nonuniform systems with field variables, for example, to the time- 
dependent GL model, by generalizing the previous derivation c~ of the 
dynamic scaling law based on Kadanoff's cell analysis. (zS~ 

APPENDIX  A. M O M E N T S  IN THE INITIAL REGION 

In the initial region, we have y2~(t) = O(E~), as is seen from (22). Since 
f2.({y2j(s))) is a function of y2.+2, Y2.+~ ..... and f z . ( 0 ) =  0, then 
f2.({y2j(s))) = O(E"+I). Consequently, the first term in (25) does not affect 
y2~(t) to order E ". Furthermore, as is seen from the definition (20b), only the 
c2(x, ~) in g2~({Y2s}) makes a contribution to y2~(t) to order c". Thus, if we 
define y2.(t) = c"a.(t) + O(c "+ 1), then a.(t) is found to satisfy the following 
integral equation: 

~a~(t) = e2~Y~[y2~(O) + E~n(2n --1)c2(O,O) f~ a~_~(s)e-2~ d~ ] (1.1) 

with ao(t) = 1. The solutions of these equations are obtained by mathe- 
matical induction as 

a~(t) = b~(a(t))~; ~(t) = ere TM - cr~ (A.2) 

with (24). This proves (23). 
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A P P E N D I X  B. DERIVATION OF (34) 

From (20b), g2.({Y2j}, E) can be expanded as 

g2.({Y2j}, E) = n(2n - 1)c2(0, 0 )y2 . -2  + R2 . (y2 . ,  Y2.+2 .... ) (B.1) 

It is easily shown that the remaining term R2. does not make a finite con- 
tribution in (34), because y2.(7)  = O(T") for a small T. Therefore, we have 

lira e (2yf~§ l)-lg2~({y2j},  e) d~ 
E~O 
f i x e d  

f2 = n(2n - 1)c2(0, 0) lira e (2~,~:~§ , e) d~ 
E'.-.* 0 

~ f i x e d  

= n(2n - 1)c2(0, 0) lira (e~-~ e-2~'~y2~_2(eEe2" , e) ds 
~'~,O,t~O ,i 0 

f i x e d  

= n(2n - 1)c2(0, 0)~ -~ e - 2 ~ a . _ l ( s )  ds 

-- [1 - (~o/~)~]b .  (B .2 )  

where we have used the property that 

y2n(a,e 2't, ,) = ,"a.(t) + 0 ( ,  "+1) (B.3) 

with (A.2). Thus, we obtain (34) with the use of the relation 

~-"yz.(O) = (ao/~)"b. (a.4) 

A P P E N D I X  C. GENERATING FUNCTION A N D  D ISTRIBUTION 
FUNCTION FOR A S Y M M E T R I C  CASE 

It is easily shown that the distribution function ~(~, t) with ~ = x 2 

satisfies the equation 

8_#(~, t ) /3 t  + ~ ( r  ~ 0/0f, ~)P(~, t) = 0 (C.1) 

for the symmetric case that 

c ~ . ( - x ,  E) = e2.(x,  E) and e ~ . _ l ( - x ,  ~) = - e 2 . - l ( x ,  ~) (C.2) 

Here, ~ is defined by 

( -  l)-- 
P, E) ,=1 n! e,(~, ,)p" (C.3) 

Then, the generating function W(~, t) corresponding to/~(~, t) is proven to 
satisfy Eq. (38), by performing partial integrations ,iteratively. 
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APPENDIX D. DERIVATION OF THE SOLUTION ~,~(),, t) 

I t  is easy to check that  (42) is a solution of  (36) that  satisfies the boundary  
condi t ion (41). In  order to find the desired solution, we put  

~. 1 oo "F,o(;~,'O ~f_~(exp-~)exp[aF(x,.)]dx (D.1) 

Then,  F(x ,  .r) has to satisfy the following differential equat ion:  

V.r ~F/~,  - a/Fcl(V~ff) = 0 (D.2) 

,The general solution of  this equat ion is given by 

F = [ f - l (X/~0(x))]  2 (D.3) 

where 9(x) is an arbitrary funct ion of  x. The matching between (D. 1) and (41) 
leads to the result that  ~o(x) = x. Thus, we obtain (42). 

NOTE ADDED IN PROOF 

The essence o f  this paper has already been shown to be valid even to 
multimacrovariables by the present author  (to be published). 
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